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An asymptotic method is given for constmcting a stress-strain state of an ellip- 
tic plate subjected to dynamic loading, using a three-dimensional formulation. 
Investigations are carried out for the case of skew-symmetric (bending) oscilla- 
tions of the plate relative to the middle surface, although the method can also 
be used in the case of symmetric oscillations of the plate. 

Let us consider forced steadystate oscillations of an isotropic, homogeneous eIlip- 
tic plate of thickness 2h R with semiaxes a and b iFig. 1). We assume that the 
plane edges of the plate are stress-free and the loading acts only on the cylindrical 

side surface. We seek the displacerrent vector in the form at = a (z, y, z)t$@t , 
where o denotes the frequency of the forced vibrations. Satisfying the Lam6 system 
of differential equations and the boundary conditions at the plane edges and using the 
Lur’e [l] symbolic method, we find that the stress-strain state of the plate consists of 
two states. One of these states id described by the vector of the amplitude displace- 
ment functions 

Aur, = p,t-,~~ (2) 

(3) 

where s, n denotes a local system of dimensionless, orthogonal coordinates attached 
to the contour r of the plate in the 5, I/ -plane (Fig. I), p is the radius of curva- 
ture of the contour I’, R is the characteristic dimension of the plate in the. 5, ,g - 

plane (the smallest radius of curvature of the ellipse), G is the shear modulus, 1: 
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is the Poisson*s ratio , PI is the material density of the plate and pm are the roots 
of the Rayleigh-Lamb equation (3). 

The other stress-strain state of the plate is described by the vector of the amplitude 
displacement functions 

~(2) zz. 0, hBk - ck*Bk = 0 
cos?q~=O, ~kZ=ok*+L22 (k==1,2,...) (5) 

In the case of bending mcillations, the Lamb equation (3) has two real roots (of order 
1 / h) within the range of variation of Q (QA < 4.7). and an enumerable set of 

complex roots (of order 1 / A”) the asymptotic expansicns of which are given in [Z]. 
Let us denote the complex roots of the Lamb equation by yV2 I’ h2 and the cor- 

respondingsolutionsof(2) by C, (n, s), p = I, 2. . . . . Paper [S] gives asymptotic re- 
presentations of these solutions in terms of the values of the functions C;, at the 
boundary I’. The solution in question is a boundary layer solution. Below we shall 
utilize the following asymptotic expansions of the normal derivatives of the functions 

C, at the contaur r : 

where the operators &_,i and Qpi are given below. 

Denoting the roots of (5) by o: = oi / As, we obtain 

Q = J+ (2k - 11% 
4 

- h2Q2 (k = 1,2, . . a) 

The expressio~(S)hold for & (s, n) when ?&I < n / 2 , provided that c, is re- 
plied by Bk , Cp by hi and yp by %. When hQ>nn/2. thenthequant- 
ity or becomes purely imaginary in the range of variation of $‘I in question and 
the solution corresponding to or till no longer be a boundary layer solution [4]. In 
this case we construct the solutim using the Mathieu functions in the manner analog- 
ous to that used below for the real roots of the Lamb equation. 

We write the soluticns of the Helmholtz equation corresponding to the real roots 
of the Lamb equation (we shall call these solutions, in what follows, the penetrating 
solutions) in the elliptical E, TJ -coordinates, in terms of the Mathieu functions [5]. 
The dimensionless Cartesian and elliptical coordinates are connected by the formulas 
(E is the eccentricity of the ellipse and g = E,, corresponds to the plate contour I’) 

51 t= +-- 
i ““,% ch E ~0s q, y1 z + = *shEsing 

R = a(1 -es), o<:<n, O\<E<& 

Solution of (2) wrftten in the elliptical coordinates with the physical meaning of the 
problem taken into account, has the form [5] 
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qi -r_ pi”‘2 [c!& (1 - q]-” (; 1, 2) 

We sbaJ.3 assume that the following system of foxes (Fig. 1) is given at the cylindrical 
part of the plate surface: 

on = 2Gr\i‘(j, .s) eiot, q, = 2GT (l;, 8) &+l, 

z nz = 2GZ ( i, s) ei”‘” 

‘1’0 simplify the argume&, we shall consider the oscillations symmetrical about 
the eJ_lQxe axes, i. e, R$’ =-= 0; i = 1, 2; M = 0,. 1, 2?. . . . 

We construct the stress-strain state in the plate as a sum of three states: the pene- 
trating state, the potential and the vorticaf state. Tha we have the fo~ow~g rela- 
tions at the side surface of the plate: 

2 dD 

z= zc A$’ (e + a$) (40s hail; cos hfii - cos h/3& cos hai) J,” x 
i-i1 m=o 

1 m 
2 c 

k==l 
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Q, (5) = km2 j2x, sin xpc cos BP - (yp2 + ?cp2) 7 CDS 2.~~1 

JfP (5) = 2 (1”1-’ y) (ypS + x,2) 7 cos Pep 

Fp (5) = ii,+ (yp2 + xp2) (cos 3c& co&, - cos S,c cos xp) 

J it @ = 2 (1 -&a) 
(ch 2& - co.9 2q), 

0&a = Ok2 + h%P, xp” == yp2 + h?P, $2 = yp2 + 2:*--z) Awa 

It can easily be shown that the functions M;, (81, QP (u, FP (5) are of zero order 
with respect t,o h. Thus the problem in question reduces to that of determining the 
cfnstants ~4%’ and the boundary values of the iknctions C, and &, from the 
stresses given at the side surface. 

The infinite system of equations for determining A$), cP (s) and bh (s) can be 
constructed by expanding the stresstr given in (7) into the Fourier series in E. We 
have 



792 0. K. Aksentian and T. N. Selezneva 

I?!” = 4 (- 1)’ nrS22 
[A2 (5 - 1) pi + h%at - rW] ai sin hai co9 ii& 

2 
f h2aiz - FW) (k2@ - 7%~) (pi + at) 

V$r’ 5 2 (_ 1)’ QQ {~26iaQ2 + (r-1)2 n2 [4pi (a-l) -@I} a,sin hai cosh& 

[A%,2 - (1. - i)2 n2] [@@ia - (F - I)2 $x2] (& _t ais) 

~7’ = 4 (_ j)rrnQ2 [(G ;*~“~z~2p~;a~w r2n2] %psin 1cp cos Q 

P P - r2=? (Y,2 + XF”) 

L;’ = (- qr7.J&2ff _&q (Y~z~~~~s~r~~~~ 
i 

I$ = 2 (- 1)‘W 
jSp2h2Q2 i- 0. - 172 3x: [4Yp2 (a--1)-LzCJ2]} xp sin x,cos 8, 

[x 
P 2 - (r - I)2 n2j [ij$ - (1. - I)‘+] (Y,a + xpS) 

u’,p) = 2 (- I++ 73 

f$. (ok2 - Fsn2) ’ 
w’,r’ = 

(--I) k 
rtktl 0 

2 -2v 
ek2 -- tp - 1)s 112 7 cr = 2 (1 -v) 

Here azm are the eigenvalues of the ~~~ functians, while N, (s), T, ($1 and 
2, (s) are-coefficients of the Fourier expansions of the boundary functions N (6, s), 

T (5, 4, 2 (P, sf- 
Let us assume that all functions X (s) = N, (s), T, (s), 2, (s), cp (s), bk (s) 

can be written in the form of the power series in L 

x (s) = x0 (S) + hX, (s) + h2X, (S) + I . . (9) 

According to ES] we have 

We obtain the expressions for the normal derivatives of the functions Bk (n, s) on 
the COntOur r by replacing in (10) yp by ok and Cpi (s). by bki(s). 

Substituting the asymptotic expansions (9) and (IO) into (8) and equating the coeffic- 
ients of like powers in h we obtain, in the first stage, the following infinite system 
of linear equations for determining cPa (s} and bRO (s) : 

cc co 

c [G”‘y 2 + I,“‘] cpo (s) = 
(11) 

P P - i!_ P 0 t 2 c U$%$%kO (s) = 0 

P=l k=l 
cc 

2 K;‘y*c* (s) = 0 (r = 1.2, . . .) 
p=1 

&qx&.ng the system (11) we find, that it has only a zero solutions CPO (s) s 0, 

b&, (S) E 0. 
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A({’ 
In the second stage of the asymptotic process we obtain a system for determining 

m f c,, @h hl (4 

(13) 

k=l p=1 
m 

c 

($0 R pCTkbkt (I” = 1,2,. . .) 
k==l 

etc. When the loading is sufficiently pmooth, the process can be continued for as long 

as we please. 
At this stage we can carry out the asymptotic analySiS of the stress-strain state of 

the plate inside the region, and at the boundary. We have 

C, = 2G boo’+ ~~~~~~~-“~~~~~~~e~~ y -I- 
( 14) 

p=1 

p=1 
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00 m sin@& 
GQp(5)"‘~!'$~~~,,(s)exp~- ~T~-“z x 
P=l k=.l 

0.h.bh.l (s) exp y 1 1 + . . . &of 
m 

z nr = 2G ic F;3 (5) ~-“%cp~ 6) exp 
p=1 p=1 

t 
w-1iyp~p2 (s) + ypScpl (s) - ii”‘-$ cpI (4) exp F + 
1 m - 
2 c 

H-“‘” cos &@kI (a) exp 

k=r 

F] + . . .}m 

D&j= [2y,%0sx,5c0s6, -((yp2 + x,~)cos6p~ COSX,]h--2 

The formulas W(O), z$, ~2) . in (14) correspond to the penetrating solution expressed 
in terms of the Mathieu functions. This implies that the correction brought into the 
determination of w by the boundary layers, is of higher order in h than W itself 

over the whole region occupied by the plate. The same can be said of the displace- 
ments u,, and .U,. The stresses present a somewhat different picture. When the 

stress 0, (s,, T,.,J is considered away from the edge, then the influence of the bound- 

ary layers can be neglected. As the side surface of the plate (n = 0) the correction 
due to the boundary layer is,, generally, of the same order in li. as the penetrating solu- 
tion. In the case of the stress z,, (r,) th e b oundary layers play a ~ndamental part 
at the boundary. 

The infinite system (12) can be truncated to a finite system containing 2L equa- 

tions. Every equation is written at a finite number of points of the contour r, and 

L is the number of the coefficients in the Fourier expansions of the boundary func- 
tions. The number of the coeffcients A$ to be determined coincides with the num- 

ber of points of partition of the arc s (0 < q < ST / 2). The practical convergence 
of the process of determining the coefficients A$ and of the series containing A$) 

was studied, with the number of the boundary layers retained in (12) and (13) equal 
to L - 1. The number L was chosen so as to satisfy the boundary conditions at 
the side of the plate with an error not exceeding 1%. 

To illustrate the scope of the method proposed we investigate the case of the forc- 
ed steady-state oscillations of an elliptic plate for the following values of the bound- 
ary functions: 

N = 055, T=O,Z=O (15) 

fn the case of deformation, skew symmetric with respect to the middle surface 
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of the plate, the amplitude fnnction of transverse displacement has the form 

w =I ’ $JI ja A$) 12ui ‘OS ‘ei5 cos ?+fii - (& + at) COS Ifiic COS .I&+] X 

C% hi, 4)ce2,(9il~) + J+R 5 Dp (5) H-'~~~,~(~) exp_!$ +, . . 
P=i 

Computati~s were carried out at Y = V8 using a digital computer. The extent 

to which the boundary conditions were satisfied at the side surface of the plate in the 
first stage of the asymptotic process was verified for various numbers of the boundary 
layers, while varying the parameters h, Q and E. 

Solid lines in Fig. 2 depict the amplitude stress function a, (on* = (2Ga)-10,e-iof) 
for h = 0.3, s2 = 2.2 and E F; 0.3. Line 1 depicts the penetrating solution, line 2 
a solution including the first boundary layer, and line 3 a solution with three boundary 
layers, the latter practically coinciding with N. The numerical analysis has shown 
that the first boundary layer brings in a signific~t contribution , and taking into acc- 

ount the remaining boundary layers makes it possible to satisfy the boundary conditions 
at the side surface of the plate with a predetermined accuracy. 

In order to analyse the convergence of the asymptotic series in h in practice, we 
compared wthe amplitude stress function ds at the boundary of an elliptic plate of 
small eccentricity (a ._ 0.01) with the corresponding stress for a circular plate express- 
ed in the terms of series in Bessel functions [Z, 61. Broken lines in Fig. 2 depict the 

amplitude stress function (T, (as* = (2~~)-1~,~"~~) at the boundary for A = (1.3, Q 
=2.2 and a=O.O1 computed at the first stage of the asymptotic process, Numbers I 
and 2 denote, respectively, the penetrating solution and the solution with threebound- 
ary layers, the latter practically coinciding with the corresponding stress for a circular 
plate. 

The proposed method enables us to compute the eigenfrequencies of the elliptic 
plate. What we do, is to consider a collection of problems with the following bound- 
ary conditions: 

N=ce,(@, T=O, 2x0 (3% 
N = %n+1 b-l)1 T=O, z=o 

N = 0, T = cem (q), Z = 0 

x=0, T=se,,l(q), Z=O, m=0,1,2... 

etc. Obviously, superimposing the solutions of these problems we can obtain a solu- 
tion of a problem with arbitrary boundary conditions at the side surface of the plate [7]. 

The eigenfrequencies are determined in the given interval of variation of 62 for every 
separate problem (16) is the same manner as thdt for the boundary conditions f 15). 

The eigenvalues are determined as those values of the forced oscillation frequency, 
for which the boundary value problem in question has no finite solution. The actual 

determination of the intervals for the eigenfrequencies of the elliptic plate is based 
on the analysis of the dependence of the function w (0, Y, 0) on the frequency ft. 

Fig.3 shows the graphs of this function for h = 0.3, E = 0.3 with the numbers 1-5 
corresponding to the frequencies 1.8, 1.9, 2.0, 4.8 and 4.9. The graphs make it 
possible to determine the intervals of the eigenfrequencies 4 E (1.8; 19, Q, E 

(4.8; 4.9), and the corresponding e$genfrequencies for the circular plates are 
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Fig. 1 

Fig. 2 

Fig. 3 Fig. 4 Fig. 5 
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(A = 0.3) 9, = 1.95, L-2, = 4.96. 

We have analysed the behavior of the functions w (0, y, 0) and w (3, 0,O) 
when the circle was deformed into an ellipse, inscribed or circumscribed, Numerical 
analysis has shown that for small values of the eccentricity (from 0.01 to 0.1) the 
displacements w of the elliptic plate practically coincide with the transverse dis- 
placement of the circular plate computed using the method given in [2,6]. Fig, 4 
depicts the graphs of the functions UI (0, v, 0) for h/b = 0.1, Q = 0.5 and e = 
0.01, 0.5 and 0.6 (curves 1, 2 and 3 respectively). 

The behavior of IU (5, y, 0) relative to the angle q at the boundary _r of the 
plate was also studied. For small e (E < 0.1) the displacements of the plate contour 
can be assumed constant, The dependence of w on 71 increased with increasing E. 

Fig. 5 shows the graph of w (3, y, 0) versus T) for n = 0 , for the values h = 0.05, 
Q = 0.2 , for a = 0.4 and 0.5 (curves 1 and 2 respectively). 

REFERENCES 

1, L u r ’ e, A. I. Three-dimensional Problems of the Theory of Elasticity. Moscow, 
Gostekbizdat, 1955. 

2. A k s e n t i a n, 0. K. and S e 1 e z n e v a, T. N. Determination of frequenc- 
ies of natural vibrations of circular plates. PMM Vol. 40, No. 1, 1976. 

3. A k s e n t i a n, 0. K. and V o I o v i c h, I. I. The state of stress in a thin 

plate. PMM Vol. 27, No. 6, 1963. 

4. II s t i n o v, Iu. A. On certain features of the asymptotic method as applies to 
the study of oscillations of thin ~hom~eneous elastic plates. Materials of 

the All-Union School on the Theory and Numerical Methods of Solving Shells 

and Plates. Gegechkori, Georgian SSR, 1974. 

5. M a c L a c h 1 a n, N. W. Theory and Applications of Mathieu Functions. Oxford, 
Clarendon Press, 1947. 

6. G r i n c h e n k o, V. T. and U 1 i t k o ) A. F. Analysts of dynamic stress and 
frequency characteristics of a circular plate in the framework of the three- 
dimensional theory of elasticity. poceedings of the VIII All-Union Con- 

ference on the Theory of Shells and Plates (Rostov-on-Don, 1971). MOSCOW, 

“Nauka”, 1973. 

7. Bateman, H. andErdelyi, A. Higher Transcendental Functions. Elliptic 
and Automorphic Functions. Lami and Mathieu Functions. N.Y. McGraw 

Hill* 1953-55. 

Translated by L. K. 


