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An asymptotic method is given for constructing a stress-strain state of an ellip-
tic plate subjected to dynamic loading, using a three-dimensional formulation,
Investigations are carried out for the case of skew-symmetric (bending) oscilla-
tions of the plate relative to the middle surface, although the method can also
be used in the case of symmetric oscillations of the plate,

Let us consider forced steady-state oscillations of an isotropic, homogeneous ellip-
tic plate of thickness 2k , with semiaxes @ and b {(Fig.1), We assume that the
plane edges of the plate are stress-free and the loading acts only on the cylindrical
side surface, We seek the displacement vector in the form a;, = a (z, y, z)ei®t,
where « denotes the frequency of the forced vibrations, Satisfying the Lamé system
of differential equations and the boundary conditions at the plane edges and using the
Lur'e [1] symbolic method, we find that the stress-strain state of the plate consists of
two states, One of these states id described by the vector of the amplitude displace-
ment functions

b = Y
uf,f) = R 2 Am "'a' _I;;m 1 uil} =R Z H~1Am"’3’£‘ D
M| m==1
w® =R D} [2ptm €08 Al €08 M= (pim -+ ®) cOS A co8 Aan] o

" sin A, T
A = 20 Sin Al €08 A — (P ~+ @m®) €OS Aty g
A=h/R, L=3z]h, sz‘—“*kbm-i‘m ﬁmle"m"}‘
(1 —2v)Q*/12(1 — V)]
Q? = @?R?,Gt, H =1+4nRp™

AV = pu'¥p @

in %
(tm + 0m®)? €OS A E%—ﬁ”i - 3

O, SINAG, COS AR, =0 (m=1,2,...)
where s, n denotes a local system of dimensionless, orthogonal coordinates attached
to the contour [ of the plate in the z, ¥ ~plane (Fig.1), ¢ is the radius of curva-

ture of the contour T', R is the characteristic dimension of the plate in the. z, ¥ -
plane (the smallest radius of curvature of the ellipse), G is the shear modulus, v
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is the Poisson's ratic ,  0; is the material density of the plate and [y, are the roots
of the Rayleigh~Lamb equation (3),

The other stress-strain state of the plate is described by the vector of the amplitude
displacement functions
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In the case of bending oscillations, the Lamb equation (3) has two real roots (of order
1/ M) within the range of variation of Q (QA << 4.7), and an enumerabie set of
complex roots (of order 1 / A*) the asymptotic expansions of which are given in [2],

Let us denote the complex roots of the Lamb equation by 7,2/ A? and the cor~
responding solutions of (2) by C), (n, s), p =1, 2. .. ..Paper [8] gives asymptotic re-
presentations of these solutions in terms of the values of the functions C, at the
boundary TI'. The solution in question is a boundary layer solution, Below we shall
utilize the following asymptotic expansions of the normal derivatives of the functions
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where the operators Sp; and Uy, are given below,
Denoting the roots of (5) by of = o2/ A?, we obtain
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The expressions(6) hold for By (s, n) when AQ << /2, provided that C,, is re-
placed by By, ¢,by by and y, by ox. When AQ > m/ 2, then the quant-
ity 01 becomes purely imaginary in the range of variation of  in question and
the solution corresponding to ©; will no longer be a boundary layer solution [4], In
this case we construct the solution using the Mathieu functions in the manner analog-
ous to that used below for the real roots of the Lamb equation,

We write the solutions of the Helmholtz equation corresponding to the real roots
of the Lamb equation (we shall call these solutions, in what follows, the penetrating
solutions) in the elliptical &, m -coordinates, in terms of the Mathieu functions [5],
The dimensionless Cartesian and elliptical coordinates are connected by the formulas
(e is the eccentricity of the ellipse and § = E, coresponds to the plate contour I")
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Solution of (2) written in the elliptical coordinates with the physical meaning of the
problem taken into account, has the form [5]
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We shall assume that the following system of forces (Fig, 1) is given at the cylindrical
part of the plate surface;
n = 2GN (L, 5) €9, 1, = 26T (g, 5) elot,
Tz = 2GZ (L, 5) &

To simplify the arguments, we shall consider the oscillations symmetrical about
the ellipse axes, i.e. BY = 0; i =1,2; m = 0,1, 2,.

We construct the stress-stram state in the plate as a surri of th:ee states; the pene~

trating state, the potential and the vortical state, Then we have the following rela~
tions at the side surface of the plate:
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It can easily be shown that the functions M, ({), Qp (€), Fy () are of zero order
with respect to A, Thus the problem in question reduces to that of determining the
constants A} and the boundary values of the functions €, and By, from the
stresses given at the side surface,

The infinite system of equations for determining A{), ¢, (s) and b (s) can be
constructed by expanding the stresses given in (7) into the Fourier series in £,  We

have
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Here dom are the eigenvalues of the Mathieu functions, while N, (s), T, ($) and

Z, (s) are coefficients of the Fourier expansions of the boundary functions N (g, ),
TE s, Z(&s).

Let us assume that all functions X (s) = N, (s), 7', (s), Z, (5), ¢ (s), by (5)
can be written in the form of the power series in A
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According to [3] we have
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We obtain the expressions for the normal derivatives of the functions By (r, s) on
the contour I' by replacing in (10) vy, by Ox and c;; (s) by by(s).
Substituting the asymptotic expansions (9) and (10) into (8) and equating the coeffic~
ients of like powers in A we obtain, in the first stage, the following infinite system
of linear equations for determining ¢, (s) and by, (8):
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Inspecting the system (11) we find, that it has only a zero solutions Cpo (s) =0,

by (s) = O.
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i)In the second stage of the asymptotic process we obtain a system for determining
A%y Cp1 (5) bra (5)
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In the third stage we find Cpz (5) and bkz (s)
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etc. When the loading is sufficiently smooth, the process can be continued for aslong
as we please,

At this stage we can carry out the asymptotic analysis of the stress-strain state of
the plate inside the region, and at the boundary, We have

o P ? n
0r =26 {0 + Y My @ H ™ e (s)exp 5~ + (14
D=1

A [\; M, (@) (H ™ Vepa (5) + Sepa (s)) exp _"%’.’._ 4

p=1



794 O.K. Aksentian and T.N, Selezneva

- -3/, R ., sin @ g s
ZQp@)H _p_'\’pcm( _Z—@LH %

p=1 =
Okbyi () exp ] 4. } giot
_ 2@{25‘ (©) H™ 0 (s) exp 22 4 (404 ZF © x

=1

i /e v, 7
(H Vop2 (8) + VpScpa (s) — H™ 7{3— Cp1 (s)) exp »—E—— -4

NI

i ? 08 0xCby (s) exp fl‘;—] +.. } giot
=1

W — «{w((” + RA Z D, (&) H ™ Viepy (s)exp 222 .. } ¢lot
1

p‘:

1 1 i2 o% n?
A B
ﬂ._’.‘f_} 1= 2

2y, H® [’ p
Dy (C) = [27,% cos kL €08 8, — (Y + %,%) €08 8, cos Ky, ) A2

The formulas w®, ©%, o in (14) correspond to the penetrating solution expressed
in terms of the Mathieu functions. This implies that the correction brought into the
determination of W by the boundary layers, is of higher order in A than W itself
over the whole region occupied by the plate., The same can be said of the displace-
ments U, and U, The stresses present a somewhat different picture, When the
stress @, (S,, Tye) 18 considered away from the edge, then the influence of the bound-
ary layers can be neglected. As the side surface of the plate (n = 0) the correction
due to the boundary layer is,, generally, of the same orderin i as the penetrating solu-
tion, In the case of the stress 1, (1,,) the boundary layers play a fundamental part
at the boundary.

The infinite system (12) can be truncated to a finite system containing 2L equa-
tions, Every equation is written at a finite number of points of the contour I, and

L is the number of the coefficients in the Fourier expansions of the boundary func-
tions, The number of the coeffcients Af,i,) to be determined coincides with the num-
ber of points of partition of the arc s (0 < m < n/ 2). The practical convergence
of the process of determining the coefficients 4{V and of the series containing A9
was studied, with the number of the boundary layers retained in (12) and (13) equal
to L — 4. The number [ was chosen so as to satisfy the boundary conditions at
the side of the plate with an error not exceeding 1%.

To illustrate the scope of the method proposed we investigate the case of the forc-
ed steady-state oscillations of an elliptic plate for the following values of the bound-
ary functions:

N=oal, T=0 Z=0 (15)

In the case of deformations, skew symmetric with respect to the middle surface
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of the plate, the amplitude function of transverse displacement has the form
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Computations were carried out at v = 1/, using a digital computer, The extent
to which the boundary conditions were satisfied at the side surface of the plate in the
first stage of the asymptotic process was verified for various numbers of the boundary
layers, while varying the parameters A,  and e.

Solid lines in Fig, 2 depict the amplitude stress function oy (6,* = (2Ga)~1o,e "9
for A =03, Q@=2.2and ¢~ 0.3. Line I depicts the penetrating solution, line 2
a solution including the fisst boundary layer, and line 3 a solution with three boundary
layers, the latter practically coinciding with N. The numerical analysis has shown
that the first boundary layer brings in a significant contribution, and taking into acc-
ount the remaining boundary layers makes it possible to satisfy the boundary conditions
at the side surface of the plate with a predetermined accuracy.

In order to analyse the convergence of the asymptotic series in A in practice, we
compared wthe amplitude stress function o, at the boundary of an elliptic plate of
small eccentricity (e — 0.01) with the corresponding stress for a circular plate express-
ed in the terms of series in Bessel functions [2,6]. Broken lines in Fig, 2 depict the
amplitude stress function 0 (0:* = (2Ga)~10.'*') at the boundary for A = 0.3, Q
=2.2 and ¢=0.01 computed at the first stage of the asymptotic process, Numbers 7
and 2 denote, respectively, the penetrating solution and the solution with three bound-
ary layers, the latter practically coinciding with the corresponding stress for a circular
plate,

The proposed method enables us to compute the eigenfrequencies of the elliptic
plate, What we do, is to consider a collection of problems with the following bound-
ary conditions;

N=ce,(m), =0 2Z2=0 (16)
N=se,yMm, =0 Z2=0

N=0, T=ce,(y), Z=20

N=0, T=sep,Mm, Z=0, m=10,1,2...

etc, Obviously, superimposing the solutions of these problems we can obtain a solu-
tion of a problem with arbitrary boundary conditions at the side surface of the plate [7].
The eigenfrequencies are determined in the given interval of variation of Q for every
separate problem (16) is the same manner as that for the boundary conditions (15),

The eigenvalues are determined as those values of the forced oscillation frequency,
for which the boundary value problem in question has no finite solution, The actual
determination of the intervals for the eigenfrequencies of the elliptic plate is based
on the analysis of the dependence of the function w (0, y, 0) on the frequency Q.
Fig. 3 shows the graphs of this function for A = 0.3, & = 0.3 with the numbers 71—
corresponding to the frequencies 1.8, 1,9, 2.0, 4.8 and 4,9, The graphs make it
possible to determine the intervals of the eigenfrequencies Q, e (1.8; 19), 8, =
{4.8; 4.9), and the corresponding eigenfrequencies for the circular plates are
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(A =03) Q = 1.95, Q, = 4.96.

We have analysed the behavior of the functions w (0, y, 0) and w (z,0,0)
when the circle was deformed into an ellipse, inscribed or circumscribed, Numerical
analysis has shown that for small values of the eccentricity (from 0, 01 to 0, 1) the
displacements w of the elliptic plate practically coincide with the transverse dis-
placement of the circular plate computed using the method given in [2, 6], Fig. 4
depicts the graphs of the functions w (0, y, 0) for A/b = 0.1, Q = 0.5 and & =

0.01, 0.5 and 0.6 (curves 1, 2 and 3 respectively).

The behavior of w (z, y, 0) relative to the angle v at the boundary I of the
plate was also studied, For small e (s  0.1) the displacements of the plate contour
can be assumed constant, The dependence of w on 7 increased with increasing e.
Fig.5 shows the graph of w(z,y, 0) versus 5 for » = 0, for the values X = 0.05,
Q@=02, for g=04 and 0.5 (curves I and 2 respectively).
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